Exercise 27

Differentiate f and find the domain of f.

$$
f(x)=\frac{x}{1-\ln (x-1)}
$$

Solution

Recognize that the denominator of a rational function cannot be zero, and only the logarithm of a positive number can be taken.

$$
\begin{array}{cll}
1-\ln (x-1) \neq 0 & \text { and } & x-1>0 \\
\ln (x-1) \neq 1 & \text { and } & x>1 \\
x-1 \neq e^{1} & \text { and } & x>1 \\
x \neq 1+e & \text { and } & x>1
\end{array}
$$

Therefore, the domain of the function is

$$
(1,1+e) \cup(1+e, \infty)
$$

Take the derivative of the function with respect to x by using the chain and quotient rules.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\frac{x}{1-\ln (x-1)}\right] \\
& =\frac{\left[\frac{d}{d x}(x)\right][1-\ln (x-1)]-\left\{\frac{d}{d x}[1-\ln (x-1)]\right\} x}{[1-\ln (x-1)]^{2}} \\
& =\frac{(1)[1-\ln (x-1)]-\left[-\frac{1}{x-1} \cdot \frac{d}{d x}(x-1)\right] x}{[1-\ln (x-1)]^{2}} \\
& =\frac{[1-\ln (x-1)]-\left[-\frac{1}{x-1} \cdot(1)\right] x}{[1-\ln (x-1)]^{2}} \\
& =\frac{1-\ln (x-1)+\frac{x}{x-1}}{[1-\ln (x-1)]^{2}} \times \frac{x-1}{x-1} \\
& =\frac{(x-1)-(x-1) \ln (x-1)+x}{[1-\ln (x-1)]^{2}(x-1)} \\
& =\frac{2 x-1-(x-1) \ln (x-1)}{(x-1)[1-\ln (x-1)]^{2}}
\end{aligned}
$$

